Small-Angle X-ray Scattering Basics \& Applications

Yoshiyuki Amemiya and Yuya Shinohara
Graduate School of Frontier Sciences,
The University of Tokyo

Overview

- Introduction
- What's SAXS ?
* History
- Application field of SAXS
* Theory
* Structural Information obtained by SAXS
* Experimental Methods
- Optics
- Detectors
* Advanced SAXS
- Microbeam, GI-SAXS, USAXS, XPCS etc...

What's Small-Angle X-ray Scattering?

Bragg's law: $\lambda=2 d \sin \theta$

small angle \longrightarrow large structure

(1-100 nm)
crystalline sample --> small-angle X-ray diffraction: SAXD solution scattering / inhomogeneous structure --> SAXS

History of SAXS (< 1936)

Krishnamurty (1930)
Hendricks (1932)
Mark (1932)
Warren (1936)

Observation of scattering
from powders, fibers, and colloidal dispersions

carbon black

Molten silica - silica gel

History (> 1936)

Single crystals of AICu hardened alloy
A. Guinier (1937, 1939, 1943)

Interpretation of inhomogeneities in Al alloys "G-P zones", introducing the concept of "particle scattering" and formalism necessary to solve the problem of a diluted system of particles.
O. Kratky $(1938,1942,1962)$
G. Porod (1942, 1960, 1961)

Description of dense systems of colloidal particles, micelles, and fibers.

Macromolecules in solution.

Application of SAXS

Typical SAXS image

Proteins in solution (Dr. Svergun, EMBL)

Nanocomposite

Application of SAXS

- Size and form of particulate system
. Colloids, Globular proteins, etc...
* Inhomogeneous structure
* Polymer chain, two-phase system etc.
* Distorted crystalline structure
* Crystal of soft matter

SAXS of particulate system

Surface structure

$I(q) \sim q^{-(6-d s)}$
(ds: surface fractal dimension)
Scattering angle 2θ or Scattering vector q

$$
q=4 \pi \sin \theta / \lambda
$$

Basic of X-ray scattering

$$
\text { Incident X-ray } \quad \begin{gathered}
\text { Scattered X-ray } \\
\text { (wavenumber: } \boldsymbol{k} s \text {) } \\
\text { (wavenmber: } \boldsymbol{k}_{\boldsymbol{i}} \text {) } \\
\text { Sample }|\boldsymbol{q}|=4 \pi \sin \theta / \lambda
\end{gathered}
$$

Amplitude of scattered X-ray $\quad A(\boldsymbol{q})=\int_{V} \rho(\boldsymbol{r}) \exp (-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{r}$
Fourier transform of electron density

Scattering intensity per unit volume: $I(\boldsymbol{q})=\frac{A(\boldsymbol{q}) A^{*}(\boldsymbol{q})}{V}$

Correlation Function \& Scattering Intensity

Correlation function of electron density per unit volume

$$
\begin{gathered}
\gamma(\boldsymbol{r})=\frac{1}{V} \int_{V} \rho\left(\boldsymbol{r}^{\prime}\right) \rho\left(\boldsymbol{r}+\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime}=\frac{1}{V} \frac{P(\boldsymbol{r})}{\text { Patterson Function }} \\
\text { (Debye \& Bueche 1949) }
\end{gathered}
$$

asymptotic behavior of the correlation function

$$
\gamma(\boldsymbol{r}=0)=\left\langle\rho^{2}\right\rangle \quad \gamma(\boldsymbol{r} \rightarrow \infty) \rightarrow\langle\rho\rangle^{2}
$$

Scattering Intensity: Fourier Transform of correlation function

$$
I(\boldsymbol{q})=\int_{V} \gamma(\boldsymbol{r}) \exp (-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{r}
$$

Real space and Reciprocal Space

Real Space

Electron Density

 $\gamma(r)$

Autocorrelation Function

Fourier Trans.

Reciprocal Space
Scattering amplitude

Scattering Intensity

Diffraction from Lamellar Structure

ideal ordering

Long period changes.

Thickness of crystal changes.

Normalized Correlation Function

Local electron density fluctuations: $\eta(\boldsymbol{r})=\rho(\boldsymbol{r})-\langle\rho\rangle$

$$
\longrightarrow\left\langle\eta^{2}\right\rangle=\left\langle(\rho(\boldsymbol{r})-\langle\rho\rangle)^{2}\right\rangle=\left\langle\rho^{2}\right\rangle-\langle\rho\rangle^{2}
$$

average density fluctuaitons
Normalized Correlation Function

$$
\gamma_{0}(\boldsymbol{r})=\frac{\gamma(\boldsymbol{r})-\langle\rho\rangle^{2}}{\left\langle\eta^{2}\right\rangle}=\frac{1}{\left\langle\eta^{2}\right\rangle} \frac{1}{V} \int_{V} \eta\left(\boldsymbol{r}^{\prime}\right) \eta\left(\boldsymbol{r}+\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime}
$$

$$
\xrightarrow[\text { substitution }]{ } I(\boldsymbol{q})=\int_{V} \gamma(\boldsymbol{r}) \exp (-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{r}
$$

$$
I(\boldsymbol{q})=\frac{\left\langle\eta^{2}\right\rangle}{\eta_{V}} \int_{V} \gamma_{0}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r}+\frac{\langle\rho\rangle^{2} \delta(\boldsymbol{q})}{\uparrow}
$$

Only the average density fluctuations contribute to the signal.

Invariant Q

$$
\frac{I(\boldsymbol{q})=\left\langle\eta^{2}\right\rangle \int_{V} \gamma_{0}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r}+\frac{\langle\rho\rangle^{2} \delta(\boldsymbol{q})}{\uparrow}}{\underset{\text { Omitted. }}{ }}
$$

Parseval's equality

$$
\begin{array}{l|c}
\int I(\boldsymbol{q}) \mathrm{d} \boldsymbol{q}=(2 \pi)^{3}\left\langle\eta^{2}\right\rangle & \text { Parseval's equality } \\
\downarrow & A(\boldsymbol{q}) \stackrel{\text { Fourier Trans. }}{\longleftrightarrow} \eta(\boldsymbol{r}) \\
\pi \int I(q) q^{2} \mathrm{~d} q & \int|A(\boldsymbol{q})|^{2} \mathrm{~d} \boldsymbol{q}=(2 \pi)^{3} \int|\eta(\boldsymbol{r})|^{2} \mathrm{~d} \boldsymbol{r}
\end{array}
$$

Invariant: $Q=\int_{0}^{\infty} I(q) q^{2} \mathrm{~d} q=2 \pi^{2}\left\langle\eta^{2}\right\rangle$

Spherical sample

$$
\rho(r)=\left\{\begin{aligned}
\Delta \rho & r<R \\
0 & \text { else }
\end{aligned}\right.
$$

$$
I(q)=\frac{(\Delta \rho)^{2} V_{\text {particle }}{ }^{2}}{V}\left[3 \frac{\sin q R-q R \cos q R}{(q R)^{3}}\right]
$$

Homogeneous sphere

$$
I(q)=\frac{(\Delta \rho)^{2} V_{\text {particle }}{ }^{2}}{V}\left[3 \frac{\sin q R-q R \cos q R}{(q R)^{3}}\right]
$$

Homogeneous elipsiod

Fixed particle
Random orientation

anisotropic scattering
isotropic scattering

Size distribution

Radius of Gyration -- Guinier Plot

$$
\begin{gathered}
I(q) \sim \exp \left(-\frac{q^{2} R_{g}{ }^{2}}{3}\right) \\
\downarrow \\
\log (I(q))=-\frac{q^{2} R_{g}{ }^{2}}{3}
\end{gathered}
$$

Guinier plot: $\log (/(q))$ vs q^{2}
O. Glatter \& O. Kratky ed., "Small Angle X-ray Scattering", Academic Press (1982).

Structure Factor \& Form Factor

- GIFT (Generalized Inverse Fourier Trans.) by O. Glatter

Scattering from Inhomogeneous Structure

Electron Density

two phase system
Autocorrelation

$$
\tilde{\rho}(r)=\exp \left(-\frac{r}{\xi}\right)
$$

Fourier trans.

Two-phase system

Phase 1: ρ_{1}, volume fraction ϕ Phase 2: ρ_{2} volume fraction $1-\phi$

$$
\begin{aligned}
A(\boldsymbol{q}) & =\int_{\phi V} \rho_{1} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r}+\int_{(1-\phi) V} \rho_{2} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r} \\
= & \int_{\phi V}\left(\rho_{1}-\rho_{2}\right) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r}+\rho_{2} \int_{V} \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{r}
\end{aligned}
$$

Babinet's principle

Two complementary structures produce the same scattering.

Two-phase system -- cont.

Averaged square fluctuation of electron density

$$
\left\langle\eta^{2}\right\rangle=\phi(1-\phi)(\Delta \rho)^{2} \quad \text { where } \quad \Delta \rho=\rho_{1}-\rho_{2}
$$

$I(q)=4 \pi\left\langle\eta^{2}\right\rangle \int_{0}^{\infty} \gamma_{0}(r) \frac{\sin (q r)}{q r} r^{2} \mathrm{~d} r$

$$
I(q)=4 \pi \phi(1-\phi)(\Delta \rho)^{2} \int_{0}^{\infty} \gamma_{0}(r) \frac{\sin (q r)}{q r} r^{2} \mathrm{~d} r
$$

$$
Q=\int_{0}^{\infty} I(q) q^{2} \mathrm{~d} q=2 \pi^{2} \phi(1-\phi)(\Delta \rho)^{2}
$$

Invariant: does not depend on the structure of the two phases but only on the volume fractions and the contrast between the two phases.

Porod's law

For a sharp interface, the scattered intensity decreases as q^{-4}.

$$
I(q) \rightarrow(\Delta \rho)^{2} \frac{2 \pi}{q^{4}} \underline{S} / V
$$

Combination of Porod's law \& Invariant

$$
\pi \cdot \frac{\lim _{q \rightarrow \infty} I(q) q^{4}}{Q}=\frac{\frac{S}{V}}{\text { surface-volume ratio }}
$$

important for the characterization of porous materials

Intensity for random particle system

Scattering intensity: $I(q)=4 \pi \int_{0}^{\infty} \gamma_{0}(r) \frac{\sin (q r)}{q r} r^{2} \mathrm{~d} r$
Pair distance distribution function :PDDF $\quad p(r)=r^{2} \gamma_{0}(r)$ the set of distances joining the volume elements within a particle, including the case of non-uniform density distribution.

Particle's SHAPE and maximum DIMENSION.

histogram o all intra-particle distances

$$
I(q)=4 \pi \int_{0}^{\infty} p(r) \frac{\sin (q r)}{q r} \mathrm{~d} r
$$

Spherical particle

Cylindrical particle

Flat particle

courtesy to Dr. I.L.Torriani

Ellipsoids

Two ellipsoid = dimer

courtesy to Dr. I.L.Torriani

Diffraction from Periodic Structure

Diffraction

$$
I(\boldsymbol{q}) \sim|G(\boldsymbol{q})|^{2}|F(\boldsymbol{q})|^{2}
$$

$$
\text { Laue function: }|G(q)|^{2}=\frac{\sin ^{2}(\pi N q \cdot r)}{\sin ^{2}(\pi q \cdot r)}
$$

* Maximum $\sim \mathrm{N}^{2}$
* FWHM $\sim 2 \pi / N$
* FWHM --> Size of crystal

Laue Function

Laue function: $|G(q)|^{2}=\frac{\sin ^{2}(\pi N q \cdot r)}{\sin ^{2}(\pi q \cdot r)}$

* Large crystal
* High diffraction intensity
* Narrow FWHM
* Soft matter (crystal size: small)
* Low diffraction intensity
* Wide FWHM

Crystal size --> Intensity \& FWHM of diffraction

Imperfection of crystal (2D)

Imperfection of 1 st kind
Thermal fluctuation etc.

Imperfection of 2 nd kind in the case of soft matter

Imperfection of crystal

Imperfection of 1 st kind

Imperfection of 2 nd kind

Imperfection of lattice (1D)

 Imperfection of 1 st kind $\rightarrow-$

* Effect of imperfections on diffraction ?

Diffraction from lattice-structure

$z(\boldsymbol{r})$ with imperfection ---> calculate $Z(\boldsymbol{q})$

Imperfection of 1 st kind

$p(\boldsymbol{r})$: distribution function
$\xrightarrow{\text { Fourier trans. }} P(\boldsymbol{q})$

Diffraction with imperfection: $|Z(\boldsymbol{q})|^{2}=N\left[1-\underline{|P(\boldsymbol{q})|^{2}}\right]+\underline{|P(\boldsymbol{q})|^{2}} \frac{Z_{0}(\boldsymbol{q})}{1}$
Thermal fluctuation (p(r): Gaussian)
Debye-Waller factor: $\exp \left(-\frac{1}{3} \sigma^{2} q^{2}\right)$

- decrease diffraction intensity (no effect on FWHM)
- background at larger angle diffraction

Imperfection of 2nd kind

Paracrystal theory
$|Z(q)|^{2}=N\left[1+\frac{P(q)}{1-P(q)}+\frac{P^{*}(q)}{1-P^{*}(q)}\right]$

Decrease of diffraction intensity and Increase of FWHM
R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland, Amsterdam (1962).

X-ray Source for SAXS

Brilliance -- Product of size and divergence of beam

$$
\text { Brilliance }=\frac{\mathrm{d}^{4} N}{\mathrm{~d} t \cdot \mathrm{~d} \Omega \cdot \mathrm{~d} S \cdot \mathrm{~d} \lambda / \lambda}
$$

[photons/(s•mrad².mm².0.1\% rel.bandwidth)]

Brilliance is preserved (Liouville's theorem).

SAXS with a low divergence and small beam
\longrightarrow High brilliance beam is required!

SAXS Optics

PF BL-15A

PF BL-10C

SAXS slits

Detectors for SAXS

	Good Point	Drawback
PSPC	- time-resolved - photon-counting - low noise	- counting-rate limitation
Imaging Plate	- wide dynamic range - large active area	- slow read-out
CCD with Image Intensifier	- time-resolved - high sensitivity	- image distortion - low dynamic range
Fibertapered CCD	- fast read-out - automated measurement	- not good for timeresolved

X-ray CCD detector with Image Intensifier

Advanced SAXS

Microbeam X-ray

- Inhomogeneity of nano-structure

Time-resolved

- time evolution of structure
- local time evolution of structure

GI-SAXS

- surface, interface, thin films

XPCS

- structural fluctuation
- dynamics

[^0]
Application of paracrystal theory

African

Caucasian

Asian

X-ray Microbeam
($5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$)
Relationship between macroscopic form and microscopic structure?

Local observation with an X-ray microbeam

Internal structure of wool

SEM 像

R. D. B. Fraser et al., Proc. Int. Wool Text. Res. Conf., Tokyo, II, 37, (1985) partially changed.
H. Ito et al., Textile Res. J. 54, 397-402 (1986).

Relationship between IF distribution and hair curlness?

Structure of Intermediate Filament

Scattering pattern

1 D intensity profile

Real space structure Diameter

Fibre Axis

Diffraction intensity profiles

Diffraction peak originating from IF

Difference in diffraction intensity
--> Structural difference in cortex.

Curly
($\mathrm{ROC}=1.5 \mathrm{~cm}$)

Nearly Straight (ROC~10cm)

Deformation process of spherulite

Local deformation manner of polypropylene during uniaxial elongation process

Combined measurement of polarized microscope and microbeam SAXS/WAXD.

(c)

(e)

Deformation model of PP

Y. Nozue, Y. Shinohara, Y. Ogawa et al., Macromolecules, 40, 2036 (2007).

Grazing Incidence SAXS

Advantage

- Surface/interface sensitive (beam footprint).
- In-plane structure and out-of-plane structure can be separated.
- Thin film sample on substrate can be measured.

Ex: from Web page of Dr. Smiligies @ CHESS

AFM image

GI-SAXS image

USAXS using medium-length beamline

USAXS patterns from elongated rubber

TEM image

Rubber filled with spherical silica

Scattering pattern also shows hysteresis.

Structural information from USAXS

X-ray Photon Correlation Spectroscopy: XPCS

* Measurement of fluctuation of X-ray scattering intensity --> Structural fluctuation in sample

Time-resolved SAXS with coherent X-ray

Fluctuation of intensity

relaxation time in system

Autocorrelation

Dynamics of nanoparticles observed with XPCS

nano-particles in rubber

speckle pattern

fluctuation of scattering intensity

Dependence of dynamics on...

- Volume fraction of nano-particles
- Vulcanization (cross-linking)
- Type of nano-particles
- Temperature etc.

Dynamics of Filler in Rubber

Bibliography

* A. Guinier and A. Fournet (1955) "Small angle scattering of X-rays" Wiley \& Sons, New York. out-of-print
* O. Glatter and O. Kratky ed. (1982) "Small Angle X-ray Scattering" Academic Press, London. out-of-print
* L. A. Feigin and D. A. Svergun (1987) "Structure Analysis by Small Angle X-ray and Neutron Scattering" Plenum Press. out-of-print ?
* P. Lindner and Th. Zemb ed. (2002) "Neutron, X-ray and Light Scattering: Soft Condensed Matter", Elsevier.
* Proceedings of SAS meeting (2003 \& 2006). Published in J. Appl. Cryst.
* R-J. Roe (2000) "Methods of X-ray and Neutron Scattering in Polymer Science", Oxford University Press.

[^0]: Combined measurement with DSC, viscoelasticity wide-q (USAXS-SAXS-WAXS)

 - hierarchical structure

 2D measurement

 - anisotropic structure

