Cheiron School 2010 @ SPring-8

Small-Angle X-ray Scattering Basics & Applications

Yoshiyuki Amemiya and Yuya Shinohara Graduate School of Frontier Sciences, The University of Tokyo

Overview

- Introduction

 - ✤ History
 - Application field of SAXS
- Theory
 - Structural Information obtained by SAXS
- Experimental Methods
 - Optics
 - Detectors
- Advanced SAXS
 - ∞ Microbeam, GI-SAXS, USAXS, XPCS etc...

What's Small-Angle X-ray Scattering ?

crystalline sample --> small-angle X-ray diffraction: SAXD solution scattering / inhomogeneous structure --> SAXS

History of SAXS (< 1936)

Krishnamurty (1930) Hendricks (1932)

Mark (1932)

Warren (1936)

carbon black

Observation of scattering

from powders, fibers, and colloidal dispersions

Molten silica - silica gel

History (> 1936)

<u>A. Guinier</u> (1937, 1939, 1943)

Interpretation of inhomogeneities in Al alloys "G-P zones", introducing the concept of "particle scattering" and formalism necessary to solve the problem of a diluted system of particles.

<u>O. Kratky</u> (1938, 1942, 1962)

<u>**G.** Porod</u> (1942, 1960, 1961)

Description of dense systems of colloidal particles, micelles, and fibers.

Macromolecules in solution.

Single crystals of Al-Cu hardened alloy

Application of SAXS

Typical SAXS image

Proteins in solution (Dr. Svergun, EMBL)

Nanocomposite

Application of SAXS

- Size and form of particulate system
 - ✤ Colloids, Globular proteins, etc...
- Inhomogeneous structure
 - Polymer chain, two-phase system etc.
- Distorted crystalline structure
 - Crystal of soft matter

SAXS of particulate system

8

Basic of X-ray scattering

Fourier transform of electron density

Scattering intensity per unit volume:
$$I(q) = \frac{A(q)A^*(q)}{V}$$

Correlation function of electron density per unit volume

$$\gamma(\mathbf{r}) = \frac{1}{V} \int_{V} \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}' = \frac{1}{V} \frac{P(\mathbf{r})}{Patterson Function}$$

(Debye & Bueche 1949)

asymptotic behavior of the correlation function

$$\gamma(\mathbf{r}=0) = \langle \rho^2 \rangle \qquad \gamma(\mathbf{r} \to \infty) \to \langle \rho \rangle^2$$

Scattering Intensity : Fourier Transform of correlation function

$$I(\boldsymbol{q}) = \int_{V} \gamma(\boldsymbol{r}) \exp\left(-\mathrm{i}\boldsymbol{q}\cdot\boldsymbol{r}\right) \mathrm{d}\boldsymbol{r}$$

Real space and Reciprocal Space

Diffraction from Lamellar Structure

Normalized Correlation Function

Local electron density fluctuations: $\eta(\mathbf{r}) = \rho(\mathbf{r}) - \langle \rho \rangle$ $\longrightarrow \langle \eta^2 \rangle = \langle (\rho(\mathbf{r}) - \langle \rho \rangle)^2 \rangle = \langle \rho^2 \rangle - \langle \rho \rangle^2$

average density fluctuaitons

Normalized Correlation Function

$$I(\boldsymbol{q}) = \langle \eta^2 \rangle \int_V \gamma_0(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i}\boldsymbol{q}\cdot\boldsymbol{r}} \mathrm{d}\boldsymbol{r} + \langle \rho \rangle^2 \delta(\boldsymbol{q})$$

Only the average density fluctuations contribute to the signal.

Not observable.

Invariant Q

$$I(q) = \langle \eta^2 \rangle \int_V \gamma_0(r) e^{-iq \cdot r} dr + \langle \rho \rangle^2 \delta(q)$$

Parseval's equality

$$\int I(q) dq = (2\pi)^3 \langle \eta^2 \rangle$$

$$4\pi \int I(q) q^2 dq$$
Parseval's equality

$$A(q) \stackrel{\text{Fourier Trans.}}{\leftarrow} \eta(r)$$

$$\int |A(q)|^2 dq = (2\pi)^3 \int |\eta(r)|^2 dr$$

Invariant: $Q = \int_0^\infty I(q) q^2 dq = 2\pi^2 \langle \eta^2 \rangle$

Spherical sample

Homogeneous sphere

$$I(q) = \frac{(\Delta \rho)^2 V_{\text{particle}}^2}{V} \left[3 \frac{\sin qR - qR \cos qR}{(qR)^3} \right]$$

isotropic scattering

Homogeneous elipsiod

Fixed particle Random orientation

anisotropic scattering

isotropic scattering

Size distribution

Radius of Gyration -- Guinier Plot

Guinier plot: log (I(q)) vs q^2

O. Glatter & O. Kratky ed., "Small Angle X-ray Scattering", Academic Press (1982).

Structure Factor & Form Factor

Proposed remedy:

• GIFT (Generalized Inverse Fourier Trans.) by O. Glatter

Scattering from Inhomogeneous Structure

Two-phase system

Phase 1: ρ_1 , volume fraction ϕ Phase 2: ρ_2 volume fraction 1 - ϕ

$$A(\boldsymbol{q}) = \int_{\phi V} \rho_1 e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \int_{(1-\phi)V} \rho_2 e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$
$$= \int_{\phi V} (\rho_1 - \rho_2) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_2 \int_V e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$
$$A(\boldsymbol{q}) = \int_V \Delta \rho e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_2 \delta(\boldsymbol{q})$$

Two complementary structures produce the same scattering.

Averaged square fluctuation of electron density

$$\langle \eta^2 \rangle = \phi (1 - \phi) (\Delta \rho)^2$$
 where $\Delta \rho = \rho_1 - \rho_2$

$$I(q) = 4\pi \langle \eta^2 \rangle \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$
$$I(q) = 4\pi \phi (1-\phi) (\Delta \rho)^2 \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \phi (1-\phi) (\Delta \rho)^2$$

Invariant: does not depend on the structure of the two phases but only on the volume fractions and the contrast between the two phases.

Porod's law

For a sharp interface, the scattered intensity decreases as q⁻⁴.

$$I(q) \rightarrow (\Delta \rho)^2 \frac{2\pi}{q^4} \frac{S}{V}$$

internal surface area

Combination of Porod's law & Invariant

$$\pi \cdot \frac{\lim_{q \to \infty} I(q)q^4}{Q} = \frac{S}{V}$$
surface-volume ratio

important for the characterization of porous materials

Intensity for random particle system

Scattering intensity:
$$I(q) = 4\pi \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

Pair distance distribution function :PDDF $p(r) = r^2 \gamma_0(r)$

the set of distances joining the volume elements within a particle, including the case of non-uniform density distribution.

Particle's SHAPE and maximum DIMENSION.

Spherical particle

Cylindrical particle

Flat particle

Ellipsoids

Two ellipsoid = dimer

Diffraction from Periodic Structure

Diffraction Intensity: $I(q) \sim |G(q)|^2 |F(q)|^2$ Laue function: $|G(q)|^2 = \frac{\sin^2(\pi Nq \cdot r)}{\sin^2(\pi q \cdot r)}$

- Maximum ∼ N²
- ∞ FWHM ~ 2π/N
 - FWHM --> Size of crystal

Laue Function

Crystal size --> Intensity & FWHM of diffraction

Imperfection of crystal (2D)

Imperfection of 1st kind

Thermal fluctuation etc.

Imperfection of 2nd kind

in the case of soft matter

Imperfection of crystal

Imperfection of 2nd kind

Imperfection of lattice (1D) Perfect lattice

Effect of imperfections on diffraction ?

Diffraction from lattice-structure

z(*r*) with imperfection ---> calculate *Z*(*q*)

Imperfection of 1st kind

: distribution function
Fourier trans.
$$P(q)$$

Diffraction with imperfection:
$$|Z(q)|^2 = N\left[1 - |P(q)|^2\right] + |P(q)|^2 \frac{Z_0(q)}{\sqrt{1-\frac{1}{3}\sigma^2 q^2}}$$
 ideal lattice

- decrease diffraction intensity (no effect on FWHM)

- background at larger angle diffraction

Imperfection of 2nd kind

Decrease of diffraction intensity and **Increase** of FWHM

R. Hosemann, S. N. Bagchi, *Direct Analysis of Diffraction by Matter*, North-Holland, Amsterdam (1962).

X-ray Source for SAXS

Brilliance -- Product of size and divergence of beam

SAXS with a low divergence and small beam High brilliance beam is required !

SAXS Optics

SAXS slits

Detectors for SAXS

	Good Point	Drawback
PSPC	 time-resolved photon-counting low noise 	 counting-rate limitation
Imaging Plate	 wide dynamic range large active area 	• slow read-out
CCD with Image Intensifier	 time-resolved high sensitivity 	 image distortion low dynamic range
Fiber- tapered CCD	 fast read-out automated measurement 	 not good for time- resolved

X-ray CCD detector with Image Intensifier

Advanced SAXS

- hierarchical structure

- anisotropic structure

Application of paracrystal theory

Internal structure of wool

H. Ito et al., Textile Res. J. 54, 397-402 (1986).

Structure of Intermediate Filament

Diffraction intensity profiles

Nearly Straight (ROC ~ 10cm)

ROC: Radius of Curvature

Deformation process of spherulite

Local deformation manner of polypropylene during uniaxial elongation process

Combined measurement of polarized microscope and microbeam SAXS/WAXD.

Deformation model of PP

Y. Nozue, Y. Shinohara, Y. Ogawa et al., Macromolecules, 40, 2036 (2007).

Grazing Incidence SAXS

<u>Advantage</u>

- Surface/interface sensitive (beam footprint).
- In-plane structure and out-of-plane structure can be separated.
- Thin film sample on substrate can be measured.

Ex: from Web page of Dr. Smiligies @ CHESS

USAXS using medium-length beamline

USAXS patterns from elongated rubber

TEM image

Rubber filled with spherical silica

Scattering pattern also shows hysteresis.

Y. Shinohara et al., J. Appl. Cryst., **40**, s397 (2007). 55

Structural information from USAXS

X-ray Photon Correlation Spectroscopy: XPCS

Measurement of fluctuation of X-ray scattering intensity
 --> Structural fluctuation in sample

Dynamics of nanoparticles observed with XPCS

- Type of nano-particles
- Temperature

etc.

Time /sec Dynamics of Filler in Rubber

68 100

68

10

1.010

1.000

1

Bibliography

- A. Guinier and A. Fournet (1955) "Small angle scattering of X-rays" Wiley & Sons, New York. out-of-print
- O. Glatter and O. Kratky ed. (1982) "Small Angle X-ray Scattering" Academic Press, London. out-of-print
- L. A. Feigin and D. A. Svergun (1987) "Structure Analysis by Small Angle X-ray and Neutron Scattering" Plenum Press. out-of-print ?
- P. Lindner and Th. Zemb ed. (2002) "Neutron, X-ray and Light Scattering: Soft Condensed Matter", Elsevier.
- → Proceedings of SAS meeting (2003 & 2006). Published in J. Appl. Cryst.
- R-J. Roe (2000) "Methods of X-ray and Neutron Scattering in Polymer Science", Oxford University Press.

